همه چیز درباره پلیمر
زمان مطالعه: ۲۲ دقیقه

همه چیز درباره پلیمر

بشر با تلاش برای دستیابی به مواد جدید, با استفاده از مواد آلی (عمدتا هیدروکربنها) موجود در طبیعت به تولید مواد مصنوعی نایل شد. این مواد عمدتا شامل عنصر کربن , هیدروژن, اکسیژن, نیتروژن و گوگرد بوده و به نام مواد پلیمری معروف هستند. از پلیمر میتوان در ساخت وسایل خانگی , اسباب بازیها, بسته بندیها , کیف و چمدان , کفش , میز و صندلی , شلنگها و لوله های انتقال أب , مواد پوششی به عنوان رنگها برای حفاظت از خوردگی و زینتی , لاستیکهای اتومبیل و بالاخره به عنوان پلیمرهای مهندسی با استحکام بالا حتی در دماهای نسبتا بالا در ساخت اجزایی از ماشین ألات, بهره برد..

پلیمرها خواص فیزیکی و مکانیکی نسبتا خوب و مفیدی دارند . أنها دارای وزن مخصوص پاییین و پایداری خوب در مقابل مواد شیمیایی هستند. بعضی از أنها شفاف بوده و می توانند جایگزین شیشه ها شوند. اغلب پلیمرها عایق الکتریکی هستند. اما پلیمرهای خاصی نیز وجود دارند که تا حدودی قابلیت هدایت الکتریکی دارند . عایق بودن پلیمرها به پیوند کووالانسی موجود بین اتمها در زنجیرهای مولکولی ارتباط دارد. اما تحقیقات انجام شده در سالهای اخیر نشان داد که امکان ایجاد خاصیت هدایت الکتریکی در امتداد محور مولکولها وجود دارد.

این نوع پلیمرها اساسا از پلی استیلن تشکیل شده اند. با نفوذ دادن عناصری مانند فلزات قلیایی یا هالوژنها «فرایند دوپینگ) به زنجیرهای مولکولی پلی استیلن به ترتیب نیمه هادیهای پلیمری از نوع N و P به دست می أیند. افزودن عناصر یا دوپینگ سبب می شود که الکترونها بتوانند در امتدا د اتمهای کربن در زنجیر حرکت کنند. تفلون از مواد پلیمری است که به دلیل ضریب اصطکاک پایینی که دارد به عنوان پوشش برای جلوگیری از چسبیدن مواد غذایی در وسایل پخت و پز استفاده می شود.

تاریخچه پلیمر

تا اوایل قرن نوزدهم میلادی توجه زیادی به مواد پلیمری نشده بود بومیان آمریکای مرکزی از برخی درختان شیرابه‌هایی استخراج می‌کردند که شیرابه بعدها نام لاتکس به خود گرفت. در سال ۱۸۲۹ ، دانشمندان متوجه شدند که در اثر مخلوط کردن لاتکس طبیعی با سولفور و حرارت دادن آن ماده‌ای قابل ذوب ایجاد می‌شود که می‌توان از آن محصولات مختلفی نظیر چرخ ارابه یا توپ تهیه کرد. در سال ۱۹۰۹ میلادی فنل فرمالدئید موسوم به باکلیت ساخته شد که در تهیه قطعات الکتریکی ، کلیدها ، پریزها و وسایل مصرف زیادی دارد.

در اثنای جنگ جهانی دوم موادی مثل نایلون پلی اتیلن ، اکریلیک موسوم به پرسپکس به دنیا عرضه شد. نئوپرن را شرکت دوپان در سال ۱۹۳۲ ابداع و به شکل تجارتی ابتدا با نام دوپرن و بعدها نئوپرن عرضه کرد.

اولین قدم در زمینه صنعت پلاستیک توسط فردی به نام واسپاهیات انجام گرفت وی در تلاش بود ماده‌ای را به جای عاج فیل تهیه کند. وی توانست فرآیند تولید نیترات سلولز را زا سلولز ارائه کند. در دهه ۱۹۷۰ پلیمرهای‌هادی به بازار عرضه شدند که کاربرد بسیاری در صنعت رایانه دارند زیرا مدارها و ICهای رایانه‌ها از این مواد تهیه می‌شوند. و در سالهای اخیر مواد هوشمند پلیمری جایگاه تازه‌ای برای خود سنسورها پیدا کردند.

ساختار پلیمر ها

اغلب پلیمرهای متداول از پلیمریزاسیون مولکولهای ساده ألی به نام منومر به دست می أیند. برای مثال پلی اتیلن (PE) پلیمری است که از پلیمریزاسیون با افزایش (ترکیب) چندین مولکول اتیلن به دست می أید. هر مولکول اتیلن یک منومر نامیده می شود.

پلیمریزاسیون

با ترکیب مناسبی از حرارت, فشار و کتالیزور , پیوند دوگانه بین اتمهای کربن شکسته شده و یک پیوند ساده کووالانسی جایگزین أن می شود. اکنون دو انتهای أزاد این منومر به رادیکالهای أزاد تبدیل میشود, به طوری که هر اتم کربن یک تک الکترون دارد که می تواند به را دیکالهای آزاد دیگر افزوده شود. از این رو در اتیلن دو محل ( مربوط به اتم کربن) وجود دارد که مولکولهای دیگر می توانند در آنجا بدان ضمیمه شوند . این مولکول با قابلیت انجام واکنش , زیر بنای پلیمرها بوده و به (مر) یا بیشتر واحد تکراری موسوم است.

واحد تکراری در طول زنجیر مولکول پلیمر به تعداد دفعات زیادی تکرارمیشود. طول متوسط پلیمر به درجه پلیمرزاسیون یا تعداد واحدهای تکراری در زنجیر مولکول پلیمر بستگی دارد. بنابراین نسبت جرم مولکولی پلیمر به جرم مولکولی واحد تکرای به عنوان (درجه پلیمریزاسیون) تعریف شده است . با بزرگتر شدن زنجیر مولکولی ( در صورتی که فقط نیروهای بین مولکولی سبب اتصال مولکولها به یکدیگر شود) مقاومت حرارتی و استحکام کششی مواد پلیمری هر دو افزایش می یابند.

به طور کلی فرایند پلیمریزاسیون می تواند به صورتهای مختلفی مانند افزایشی , مرحله ای و …. انجام گیرد.در پلیمریزاسیون افزایشی , تعدادی از واحدهای تکراری به یکدیگر اضافه شده و مولکول بزرگتری را به نام پلیمر تولید می کنند. در این نوع پلیمریزاسیون ابتدا در مرحله اول رادیکال آزاد, با دادن انرژی (حرارتی , نوری) به مولکولهای اتیلین با پیوند دوگانه و شکست پیوند دوگانه , به وجود می آید. سپس رادیکالهای آزاد با اضافه شدن به واحدهای تکراری مراکز فعالی به نام آغازگر شکل میگیرند و هر یک از این مراکز به واحدهای تکراری دیگر اضافه شده و رشد پلیمر ادامه می یابد .

از نظر تئوری درجه پلیمریزاسیون افزایشی می تواند نامحدود باشد, که در این صورت مولکول زنجیره ای بسیار طویلی از اتصال تعداد زیادی واحدهای تکراری به یکدیگر شکل می گیرد. اما عملا رشد زنجیر به صورت نامحدود صورت نمی گیرد.هر چه قدر تعداد مراکز فعال یا آغازگرهای شکل گرفته بیشتر باشد , تعداد زنجیرها زیادتر و نتیجتا طول زنجیرها کوچکتر میشود و بدین دلیل است که خواص پلیمرها تغییر می کند. البته سرعت رشد نیز در اندازه طول زنجیرها موثر است . هنگامی که واحدهای تکراری تمام و زنجیرها به یکدیگر متصل شوند, رشد خاتمه می یابد.

از دیگر روشهای پلیمریزاسیون, پلیمریزاسیون مرحله ای است که در آن منومرها با یکدیگر واکنش شیمیایی داده و پلیمرهای خطی را به وجود می اورند. در بسیاری از واکنشهای پلیمریزاسیون مرحله ای مولکول کوچکی به عنوان محصول فرعی شکل می گیرد . این نوع واکنشها گاهی پلیمریزاسیون کندنزاسیونی نیز نامیده می شوند.

شاخه های پلیمر

پلیمرها را می‌توان از ۷ دیدگاه مختلف طبقه بندی نمود. صنایع ، منبع ، عبور نور ، واکنش حرارتی ، واکنش‌های پلیمریزاسیون ، ساختمان مولکولی و ساختمان کریستالی.

از نظر صنایع مادر پلیمرها به چهار گروه صنایع لاستیک ، پلاستیک ، الیاف ، پوششی و چسب تقسیم بندی می‌شوند. اینها صنایع مادر در پلیمرها می‌باشند اما صنایع وابسته به پلیمر هم فراوان هستند مانند صنعت پزشکی در اعضای مصنوعی ، دندان مصنوعی ، پرکننده‌ها ، اورتوپدی از پلیمرها به وفور استفاده می‌شود. پلیمرها از لحاظ منبع به سه گروه اصلی تقسیم بندی می‌شوند که عبارتند از پلیمرهای طبیعی ، طبیعی اصلاح شده و مصنوعی.

رزین

منابع طبیعی رزینها ، حیوانات ، گیاهان و مواد معدنی می‌باشد. این پلیمرها به سادگی شکل پذیر بوده لیکن دوام کمی دارند. رایج عبارتند از روزین ، آسفالت ، تار ، کمربا ، سندروس ، لیگنپین ، لاک شیشه‌ای می‌باشند. رزین‌های طبیعی اصلاح شده شامل سلولز و پروتئین می‌باشد سلولز قسمت اصلی گیاهان بوده و به عنوان ماده اولیه قابل دسترسی برای تولید پلاستیکها می‌باشد کازئین ساخته شده از شیر سرشیر گرفته ، تنها پلاستیک مشتق شده از پروتئین است که در عرصه تجارت نسبتا موفق است.

پلیمر های مصنوعی

پلیمرهای مصنوعی را می‌توان از طریق واکنشهای پلیمریزاسیون بدست آورد. از مواد پلیمری می‌توان در تهیه پلاستیکها ، چسبها ، رنگها ، ظروف عایق ، مواد پزشکی بهره جست. پلاستیکها به تولید طرحهای جدید در اتومبیلها ، کامیونها ، اتوبوسها ، وسایل نقلیه سریع ، هاورکرافت ، قایقها ، ترنها ، آلات موسیقی ، وسایل خانه ، یراق آلات ساختمانی و سایر کاربردها کمک نموده‌اند در ادمه به بررسی کاربرد چندین پلیمر می‌پردازیم:

پلیمر های بلوری مایع (LCP)

این پلیمرها بتازگی در بین مواد پلاستیکی ظهور کرده است. این مواد از استحکام ابعادی بسیار خوب ، مقاومت بالا ، مقاومت در مقابل مواد شیمیایی توام با خاصیت سهولت شکل پذیری برخوردار هستند. از این پلیمرها می‌توان به پلی اتیلن با چگالی کم قابل مصرف در ساخت عایق الکتریکی ، وسایل خانگی ، لوله و بطریهای یکبار مصرف ، پلی اتیلن با چگالی بالا قابل مصرف در ظروف زباله‌ها بطری ، انواع مخازن و لوله برای نگهداری و انتقال سیالات ، پلی اتیلن شبکهای ، پلی پروپیلن قابل مصرف در ساخت صندوق ، قطعات کوچک خودرو ، اجزای سواری ، اسکلت صندلی ، اتاقک تلویزیون و… اشاره نمود.

مواد پلیمری زیست تخریب پذیر

این پلیمرها در طی سه دهه اخیر در تحقیقات بنیادی و صنایع شیمیایی و دارویی بسیار مورد توجه قرار گرفته‌اند. زیست تخریب پذیری به معنای تجزیه شدن پلیمر در دمای بالا طی دوره مشخص می‌باشد که بیشتر پلی استرهای آلیفاتیک استفاده می‌شود. از این پلیمرها در سیستم‌های آزاد سازی دارویی با رهایش کنترل شده یا در اتصالات ، مانند نخ‌های جراحی و ترمیم شکستگی استخوانها و کپسولهای کاشتی استفاده می‌شود.

پلی استایرن

این پلیمر به صورت گسترده‌ای در ساخت پلاتیکها و رزینهایی مانند عایقها و قایقهای فایبر گلاس در تولید لاستیک ، مواد حد واسط رزینهای تعویض یونی و در تولید کوپلیمرهایی مانند ABS و SBR کاربرد دارد. محصولات تولیدی از استایرن در بسته بندی ، عایق الکتریکی – حرارتی ، لوله‌ها ، قطعات اتومبیل ، فنجان و دیگر موادی که در ارتباط با مواد غذایی می‌باشند ، استفاده می‌شود.

لاستیک های سیلیکون

مخلوط بسیار کانی- آلی هستند که از پلیمریزاسیون انواع سیلابها و سیلوکسانها بدست می‌آیند. با اینکه گرانند ولی مقاومت قابل توجه در برابر گرما به استفاده منحصر از این لاستیکها در مصارف بالا منجر شده است. این ترکیبات اشتغال پذیری نسبتا پایین ، گرانروی کم در درصد بالای رزین ، عدم سمیت ، خواص بالای دی الکتریک ، حل ناپذیری در آب و الکلها و … دارند به دلیل همین خواص ترکیبات سیلیکون به عنوان سیال هیدرولیک و انتقال گرما ، روان کننده و گریس ، دزدگیر برای مصارف برقی ، رزینهای لایه کاری و پوشش و لعاب مقاوم در دمای بالا و الکلها و مواد صیقل کاری قابل استفاده‌اند. بیشترین مصرف اینها در صنایع هوا فضاست.

لاستیک اورتان

این پلیمرها از واکنش برخی پلی گلیکولها با دی ایزوسیاناتهای آلی بدست می‌آیند. مصرف اصلی این نوع پلیمرها تولید اسفنج انعطاف پذیر و الیاف کشسان است. در ساخت مبلمان ، تشک ، عایق – نوسانگیر و … بکار می‌روند. ظهور نخ کشسان اسپندکس از جنش پلی یوره تان به دلیل توان بالای نگهداری این نوع نخ زمینه پوشاک ساپورت را دگرگون کرده است.

استفاده از فناوری نانو برای دیرسوزکردن پلیمرها

یکی از کاربردهای مهم فناوری نانو بهبود خواص مواد پلیمری از نظر آتش‌گیری و بالابردن مقاومت این مواد در برابر آتش است. این مواد عموماً در دماهای بالا ایمن نیستند؛ اما با استفاده از فناوری نانو امکان دیرسوز نمودن آنها وجود دارد. در این مطلب، نظرات مهندس صحرائیان،‌ عضو هیأت علمی پژوهشگاه پلیمر و پتروشیمی ایران، در زمینه استفاده از فناوری نانو در این زمینه آورده شده است:

نانوکامپوزیت‌های دیرسوز

با توجه به این که امروزه حجم وسیعی از کالاهای مصرفی هر جامعه‌ای را پلیمرهایی تشکیل می‌دهند که به‌راحتی می‌سوزند یا گاهی در مقابل شعله فاجعه می‌آفرینند، لزوم تحقیق در خصوص مواد دیرسوز احساس می‌شود. بر همین اساس، در کشورهای صنعتی، تلاش گسترده‌ای برای ساخت موادی با ایمنی بیشتر در برابر شعله آغاز شده است و در این زمینه نتایج مطلوبی هم به دست آمده است.

بیشتر بخوانید !
هیدروپونیک (کاشت بدون خاک)

بر همین اساس و با توجه به تدوین استانداردهای جدید ایمنی، به نظر می‌رسد استانداردهای ساخت مربوط به پلیمرهای مورد استفاده در خودروسازی، صنایع الکترونیک،‌ صنایع نظامی و تجهیزات حفاظتی و حتی لوازم خانگی، در حال تغییر به سوی مواد دیرسوز است.

از طرف دیگر مدتی است که نانوکامپوزیت‌های پلیمر – خاکرس به عنوان موادی با خواص مناسب مثل تأخیر در شعلهوری، توجه بسیاری از محققان را به خود جلب کرده است. بنابراین بهنظر می‌رسد که نانوکامپوزیت‌های پلیمر – خاکرس می‌توانند جایگزین مناسبی برای مواد پلیمری معمولی باشند؛

برای تهیه پلیمرهای دیرسوز، علاوه بر رفتار آتش‌گیری، عوامل زیادی باید مورد توجه واقع شوند؛ از جمله اینکه:

  • از افزودنی‌هایی استفاده شود که قیمت تمامشده محصول را خیلی افزایش ندهد. (مواد افزودنی باید ارزان قیمت باشند.
  • مواد افزودنی به پلیمرها باید به آسانی با پلیمر فرآیند شود.
  • مواد افزوده‌شده به پلیمر نباید در خواص کاربردی پلیمر تغییر قابل ملاحظه ایجاد کند.
  • زباله‌های این مواد نباید مشکلات زیستمحیطی ایجاد کند.

با توجه به این موارد، خاکرس از جمله بهترین مواد افزودنی به پلیمرها محسوب می‌شود که می‌تواند آتش‌گیری آنها را به تأخیر بیندازد و سبب ایمنی بیشتر وسایل و لوازم ‌شود. مزیت دیگر خاک‌ رس فراوانی آن است که استفاده از این منبع خدادادی را آسان می‌کند.

ویژگی‌های نانوکامپوزیت‌های پلیمر – خاکرس

خواص مکانیکی نانوکامپوزیت‌های پلیمر-نایلون۶ که از نظر حجمی فقط حاوی پنج درصد سیلیکات است، بهبود فوق‌العادهای را نسبت به نایلون خالص از خود نشان می‌دهد. مقاومت کششی این نانوکامپوزیت ۴۰ درصد بیشتر، مدول کششی آن ۶۸ درصد بیشتر، انعطاف‌پذیری آن ۶۰ درصد بیشتر و مدول انعطاف آن ۱۲۶ درصد بیشتر از پلیمر اصلی است. دمای تغییر شکل گرمایی آن نیز از ۶۵ درجه سانتیگراد به ۱۵۲ درجه سانتیگراد افزایش یافته است. در حالیکه در برابر همه این تغییرات مناسب، فقط ۱۰درصد از مقاومت ضربه آن کاسته شده است.

نتایج تحقیقات حاکی از آن است که میزان آتشگیری در این نانو کامپوزیت پلیمری حدود ۷۰ درصد نسبت به پلیمر خالص کاهش نشان میدهد و این در حالی است که اغلب خواص کاربردی پلیمر نیز تقویت میشود. البته کاهش در میزان آتشگیری پلیمرها از قدیم مورد بررسی بوده است. بشر با ترکیب مواد افزودنی به پلیمر میزان آتشگیری آنرا کاهش داد ولی متاسفانه خواص کاربردی پلیمر هم متناسب با آن کاهش مییافته است. در واقع کاهش در آتشگیری همزمان با بهبود خواص کاربری پلیمرها ویژگی منحصر به فرد فناوری نانو است، خصوصاً اینکه تنها با افزودن ۶ درصد ماده افزودنی به پلیمر تا ۷۰ درصد آتشگیری آن کاهش مییابد.

برخی نانوکامپوزیت‌های پلیمر – خاکرس پایداری حرارتی بیشتری از خود نشان می‌دهند که اهمیت ویژه‌ای برای بهبود مقاومت در برابر آتشگیری دارد. این مواد همچنین نفوذپذیری کمتری در برابر گاز و مقاومت بیشتری در برابر حلال‌ها از خود نشان می‌دهند.

استانداردسازی؛ ابزار قدرت در دست کشورهای پیشروی صنعتی

تطابق با استانداردهای جدید موضوعی است که همواره کشورهای پیشرو بر کشورهای پیرو دیکته کرده‌اند. در کشورهای پیشرو صنعتی،‌ استانداردها همواره رو به بهبود است. در این کشورها براساس جدیدترین نتایج تحقیقات و مطالعات متخصصان، هر چند وقت یکبار، استانداردها دستخوش تغییر می‌شوند و دیگر کشورها ناچار خواهند بود در مراودات تجاری خود با آنها این استانداردها را رعایت کنند و به این ترتیب، مجبور می‌شوند که نتایج تحقیقات آنها را خریداری کنند. مطلب زیر مثالی از این موارد است:

چندی پیش در جراید اعلام شد که بنا بر تصمیم جدید اتحادیه اروپا، هواپیماهایی که مجهز به سیستم جدید ناوبری (مطابق با استاندارد جدید پرواز)‌ نباشند، اجازه پرواز بر فراز آسمان اروپا را ندارند. در آن زمان در کشور ما فقط تعداد معدودی از هواپیماهای مجهز به این سیستم وجود داشت. اخیراً هم اتحادیه مزبور اعلام کرده است که ورود کامیون‌های فاقد استاندارد زیستمحیطی به خاک اروپا ممنوع است. در پی این اعلام، خودروسازان ایرانی به ناچار استانداردهای خود را با شرایط جدید تطبیق دادند.

پلیمر های سوپر جاذب

مقدار آب قابل دسترسی برای کیفیت و رشد مناسب گیاه از اهمیتی حیاتی برخوردار است.بااین وجود ظرفیت حفظ آب ومواد غذایی خاک بخصوص در زمین های شنی پایین است. مقادیر زیادی از آب باران وآب آبیاری از طریق شست وتبخیر به هدر می روند . مواد غذایی خاک در محدوده ی ریشه با آب شسته می شوند . طی دوره های طولانی خشکسالی میزان رطوبت خاک به کمتر از حداقل احتیاج کاهش یافته وباعث ضعف یا نابود شدن گیاه می شود. در نتیجه پیدا کردن راهی بری جلوگیری از هزینه های فراوان آبیاری های مکرر به دلیل قیمت روبه رشد آب ،این منبع محدود ونیروی کار غیر قابل اجتناب به نظر می رسد.

استاکوسورب (پلیمر سوپرجاذب)

استاکوسورب یک ماده افزودنی خاک است که آب ومواد غذایی را جذب وحفظ می کند. استاکوسورب با خاک کشت یا زمین کشت همراه می شود ، اتلاف اب ومواد غذایی از طریق شسته شدن وتبخیر را به حداقل می رساند وبه این ترتیب به رشد مطلوب گیاه کمک می نماید . آب ومواد غذایی محلول در ناحیه ریشه گیاه برای جذب ذخیره می شوند نتیجه مطلوب است.

خواص استاکوسورب

  • ظرفیت حفظ آب ومواد غذایی خاک را برای مدت طولانی افزایش می دهد.
  • دفعات آبیاری را حداقل به میزان ۵۰% کاهش می دهد.
  • مصرف یکنواخت آب را گیاهان فراهم می کند.
  • رشد سریعتر ومطلوب ریشه را ارتقاء می بخشد.
  • شسته شدن مواد غذایی خاک با آب را کاهش می دهد.
  • هزینه های آبیاری وباروری را کاهش می دهد.

ویژگی های منحصر به فرد استاکوسورب راهی به سوی بیشترین بهره وری محتویات استاکوسورب عبارتند از پلی اکلریلات پتاسیم وکوپلیمرهای پلی اکریلامید. ویژگی منحصر به فرد استاکوسورب ظرفیت جذب وحفظ قابل ملاحظه آب می باشد. استاکوسورب شرایط استرس گیاهی رابخصوص طی دوره های خشکسالی به طور محسوب کاهش می دهد . استاکوسورب از نظر PH خنثی می باشد وگیاهان ، ارگانیسم های زنده ی خاک ، یا آب سطحی را آلوده نمی سازد

بالاترین ظرفیت جذب

ماده ی افزودنی استاکوسورب با خاک کشت مخلوط می شود . آنها با تماس با آب بصورت یک ژل متورم در آمده آب را جذب وذخیره نموده ومواد غذایی محلول را در خود نگه می دارند . اگر استاکوسورب بصورت یکنواخت در عمق ۳۰ سانتی متری زمین های شنی مخلوط شود می تواند بالاترین ظرفیت جذب آب را علیرغم فشارهای موجود در خاک دارا باشد.

حداکثر آب رسانی به ریشه های گیاه

ریشه ها براساس نیاز گیاه ، آب ومواد غذایی محلول ذخیره شده را ازذرات ژله مانند ، با قدرت کشش خود جذب می کنند. ذرات ژل گونه ی استاکوسورب ، یک منبع دائمی آب را در محوطه ی ریشه ها ومنطقه نیاز گیاه فراهم می آورد که حتی از گیاه در مقابل خشکسالی محافظت می کنند .

پلیمر و الاستومر

پلیمرها به سه گروه اصلی تقسیم می‌شوند:

  1. پلاستیک های گرمانرم
  2. پلاستیک های گرما سخت
  3. ترموست ها (الاستومرها. ترموپلاستیک ها با افزایش دما نرم شده و با خنک شدن به سختی اولیه اشان برمی گردند و بیشتر قابل ذوب هستند، به عنوان مثال، نایلون، پلاستیک های گرما سخت (ترموست ها) وقتی گرم می شوند، سخت شده و هنگام سرد شدن به سختی اولیه برمی گردند. این مواد توسط کاتالیزورها یا گرم شدن تحت فشار به یک شکل دائمی تبدیل می شوند. الاستومرها نظیر رابرها می توانند بدون پاره شدن و گسستن در برابر تغییر شکل مقاومت کنند.)

در این مقاله، انواع محدودی از پلیمرهای هر گروه و کاربرد و خواص آنها مورد بررسی قرار می گیرد:

ترموپلاستیک ها:

الف) پلی اولفین یا پلیمرهای اتنیک

پلی اتیلن ۶-(PE)

پلی اتیلن اولین محصول تجاری در سال ۱۹۴۰ بوده و از نفت خام یا گاز طبیعی تهیه می شود. پلی اتیلن یک ماده ترموپلاستیک است که بسته به ساختار مولکولی از یک نوع به نوع دیگر متفاوت است. در حقیقت، با تغییر وزن مولکولی (یعنی طول زنجیر)، تبلور (یعنی وضعیت زنجیر)، و خواص شاخه ( یعنی پیوند شیمیایی بین زنجیرهای مجاور) می‌ توان محصولات متنوعی از آن تولید کرد.

پلی‌اتیلن می تواند در چهار نوع تجاری تهیه شود:
  1. دانسیته پایین
  2. دانسیته متوسط
  3. دانسیته بالا
  4. پلی‌اتیلن با وزن مولکولی بسیار بالا.
پلی اتیلن دانسیته پایین (LDPE):

دارای نقطه ذوب OC1050، سختی، مقاومت شکست فشاری، شفافیت، انعطاف پذیری و خاصیت انبساط پذیری است. بنابراین، به دلیل روش ساخت و استعمال آسان آن، برای لوله کشی و بسته‌بندی‌ها استفاده می شود. مقاومت شیمیایی آن بسیار برجسته است، گر چه به اندازه پلی‌اتیلن دانسیته و یا پلی پروپیلن نیست، اما این پلیمر در مقابل بسیاری اسیدهای معدنی (مانند HCI و HF) و قلیاها (نظیر NH4OH-KOH-NaoH) مقاوم بوده و برای جابجایی مواد شیمیایی معدنی می توان از آن استفاده کرد، ولی باید از تماس آن با آلکان ها، هیدروکربن های آروماتیک، هیدروکربن های کلرینه و اکسید کننده‌های قوی (نظیر HNo3)) اجتناب کرد.

اتصال قسمتهای مختلف از جنس PE با استفاده از جوش ذوبی انجام می شود. بدین ترتیب، انجام لوله کشی به این شکل ارزان بوده و نسبت به دیگر مواد موجود، برای خطوط فاضلاب، خطوط آب، و دیگر سرویسهایی که در معرض فشارها و یا درجه حرارت های بالا قرار نمی گیرند، بسیار مقاوم و بهترین انتخاب است. با وجود این، محدودیت هایی وجود دارد که استفاده از آنها را در بسیاری کاربردها غیرممکن می سازد. این محدودیت ها عبارت از، استحکام پایین، مقاومت حرارتی پایین (بالاترین محدوده دمایی برای این ماده ۰C60 است)، نزول کیفیت تحت پرتو تابی UV (مانند قرار گرفتن در معرض نور خورشید) است. با وجود این، پلی اتیلن می تواند جهت افزایش استحکام، مقاومت و دیگر خواص مکانیکی مطلوب با مواد دیگر ترکیب شود.

پلی اتیلن دانسیته بالا (HDPE)

دارای خواص مکانیکی برجسته و مقاومت مکانیکی نسبتاً بیشتری در مقایسه با نوع دانسیته پایین است. تنها اکسید کننده های قوی بطور محسوس در محدوده دمایی مشخص به این مواد حمله خواهند کرد. اگر رزین پایه درست انتخاب نشود، شکست فشاری HDPE می تواند مشکل ساز باشد. خواص مکانیکی این ماده، استفاده از آنها را در شکل های بزرگتر و کاربردهایی نظیر مواد ورقه ای در داخل مخازن، بعنوان عایق کاری در ستون‌ها گسترش داده است. در این ماده نیز از جوش حرارتی می توان استفاده کرد.

پلی اتیلن با وزن مولکولی بسیار بالا (UHMWPE)

یک پلی اتیلن خطی با محدوده وزن مولکولی متوسط ۱۰۶×۳ تا ۱۰۶×۵ است. زنجیرهای خطی طولانی، مقاومت ضربه بالا، مقاومت در برابر سایش، سختی، مقاومت در برابر شکست فشاری را، علاوه بر خواص عمومی PE نظیر خنثی بودن در مقابل مواد شیمیایی و ضریب اصطکاک پایین ایجاد می‌کنند. بنابراین، این ترموپلاستیک برای کاربردهایی که نیاز به مقاومت در برابر سایش دارند، نظیر اجزای استفاده شده در ماشین آلات بکار می رود. در حالت کلی، پلی‌اتیلن‌ها در مقابل تابش اشعه UV، مخصوصاً تابش نور خورشید بسیار حساس هستند. با وجود این، می‌توان از حساسیت آن با افزایش تثبیت‌کننده‌های مخصوص جلوگیری کرد

پلی پروپیلن (PP)

با متیل جانشین شده بر روی اتیلن (پروپیلن) بعنوان منومر، خواص مکانیکی بطور قابل ملاحظه ای در مقایسه با پلی اتیلن بهبود می یابد، در حقیقت این پلیمر دارای دانسیته پایین (kg.m3 915-900)، سخت تر و محکم تر بوده و دارای استحکام بیشتری نسبت به انواع دیگر است. علاوه بر این نسبت به PE در دماهای بالاتری مورد استفاده قرار می‌گیرد. مقاومت شیمیایی آن بیشتر بوده و تنها توسط اکسید کننده های قوی مورد حمله قرار می گیرد.

بیشتر بخوانید !
روشهای نوین جمع آوری فاضلاب

اگر در انتخاب رزین مناسب دقت نشود، شکست فشاری PP می‌تواند مشکل ساز باشد.خواص مکانیکی بهتر این ماده استفاده از آن را در اشکال بزرگتر، به شکل مواد ورقه ای داخل مخازن، بعنوان پوشش گسترش داده است. ضریب انبساط حرارتی برای PP از HDPE کمتر است.
دو کاربرد مهم PP ساخت قسمت های قالب تزریقی و رشته‌ها و فیبرها است.

پلی بوتیلن (PB)

از پلی ایزوبوتیلن حاصل از تقطیر روغن خام تهیه شده است. منومر آن اتیلن با دو گروه متیل جایگزین شده با دو اتم هیدروژن است.

پلی‌وینیل کلراید (PVC)

اولین ترموپلاستیک استفاده شده در مقادیر بالا در کاربردهای صنعتی است. این پلیمر با واکنش گاز استیلن با اسید‌هیدروکلریک در حضور کاتالیزور مناسب تهیه می شود. استفاده از PVC به دلیل سادگی ساخت، در طول سالها افزایش یافته است. این پلیمر دارای کاربری آسان است.در مقابل اسیدها و بازهای معدنی قوی مقام بوده و در نتیجه بیش از ۴۰ سال بطور گسترده به عنوان لوله کشی آب سرد و مواد شیمیایی استفاده می شده است. گرچه، در طراحی ساختار لوله، ضریب انبساط حرارتی خطی و ضریب الاستیک ناچیز این ماده باید در نظر گرفته شود.

پلی وینیل کلراید کلرینه شده (CPVC)

پلی وینیل کلراید می تواند با کلرینه شدن جهت تولید یک پلاستیک وینیل کلراید با مقاومت خوردگی اصلاح شده و مقاومت در دماهای ۲۰ تا ۳۰ درجه بالاتر تغیر کند. بنابراین، CPVC که دارای همان محدوده مقاومت شیمیایی PVC است، می تواند به عنوان لوله، اتصالات، کانال ها، تانکها و پمپها در تماس با مایعات خورنده و آب داغ استفاده می‌شود. برای مثال، می‌توان تعیین کرد که مقاومت شیمیایی این ماده در مقایسه با PVC در محیطهای حاوی wt%20 استیک اسید، wt%50-40 کرومیک اسید wt%70-60 نیتریک اسید در oC300 و wt%80 سولفوریک اسید، هگزان در oC50 و wt%80 سدیم هیدروکسید تا دمای ۸۰ درجه سانتیگراد، بیشتر است.

پلی وینیل استات (PVA)

از منومری که در آن یک گروه استات با یک اتم هیدروژن در منومر اتیلن جایگزین شده، تهیه می شود. این پلیمر به عنوان پلیمرهای ساختاری استفاده نمی شود، زیرا یک ترموپلاستیک نسبتاً نرم است و از این جهت تنها برای پوشش ها و چسب ها بکار می رود.

پلی استایرن (PS)

از منومر استایرن C6H5CH=CH2 (فنیل بنزن) تشکیل شده است. پلی استایرن یک آمورف و ترموپلاستیک ناهمسان است. حلقه آروماتیک به سختی پلاستیک کمک می کند و از جابجایی زنجیر که پلاستیک را ترد و شکننده می کند، جلوگیری می‌کند. این پلیمر برای کاربردهایی که مستلزم تماس با مواد شیمیایی خورنده هستند، توصیه نمی شود، زیرا مقاومت شیمیایی آن در مقایسه با دیگر ترموپلاستیک های موجود ناچیز بوده و در محیط های خاص شکست فشاری خواهند داشت.

پلی استایرن در مقابل تابش اشعه UV (مانند تابش نور خورشید ) حساس بوده و به رنگ مایل به زرد تبدیل می‌شود و مقاومت حرارتی آن نیز تنها ۶۵۰C است. این ماده به عنوان پوشش تجهیزات و در بسیاری کاربردهای الکتریکی استفاده می شود. اتصالات لوله کشی از این پلاستیک تهیه شده، و بسیاری ظروف هستند که از پلی‌استایرن اصلاح شده، ساخته می شوند. نحوه اتصال این قطعات توسط جوشکاری با استفاده از حلال است، اما استفاده از آنها به آب و محلولهایی که حاوی مواد آلی و معدنی نباشند، محدود می شود. پلی استایرن سومین ترموپلاستیک پرمصرف پس از PE و PP با بازار ۲۰% است.

پلی متیل پنتن (PMP)

یک دستگاه پلاستیک با شفافیت و خواص الکتریکی خوب است که می تواند تا دمای ۰C150 نیز مورد استفاده قرار گیرد.

آکریلونیتریل بوتادین استایرن (ABS)

یک سه بسپار با منومر بوتادین است، منومر دوم، آکریلونیتریل، از مولکول اتیلن که اتم هیدروژن آن با یک گروه نیتریل (CN) جایگزین شده تشکیل شده. منومر سوم از یک مولکول اتیلن با گروه فنیل جایگزین شده با اتم هیدروژن (استایرن) تشکیل شده است.خواص این پلیمر با تغییر نسبت آکریلونیتریل در دو جزء دیگر آن، بطور قابل ملاحظه‌ای متغیر است. این مشتق از رزین های استایرن دارای جایگاه مهمی است. در حقیقت، استحکام، سختی، ثبات بعدی و دیگر خواص مکانیکی آنها، با تغییر این نسبتها قابل اصلاح است.

گرچه، این مواد دارای مقاومت حرارتی پایین OC90 استحکام نسبتاً کم، و مقاومت شیمیایی محدود هستند، قیمت پایین، اتصال راحت و راحتی ساخت، این مواد را برای لوله‌های توزیع گاز، آب، فاضلاب و خطوط تخلیه، قسمتهای اتومبیل و خدمات بسیار از تلفن تا قسمتهای مختلف اتومبیل بسیار مورد توجه کرده است. مقاومت این ماده توسط مقدار کمی از ترکیبات آلی تهدید می شود، و به آسانی توسط عوامل اکسید کننده و اسیدهای معدنی قوی مورد حمله قرار می‌گیرد. علاوه بر این، ممکن است گراکینگ فشاری در حضور بعضی مواد آلی در آنها رخ دهد.

پلی تترافلورواتیلن (PTFE)

از منومر مولکول اتیلن کاملاً فلورینه شده به دست می آید که تحت نام تجاری تفلون ۴ شناخته شده است. نظر به ذوب بالا (۰C327) دارای پایداری دمایی بسیار بالا با مقاومت حرارتی تا ۰C280 است، و از نظر شیمیایی یکی از خنثی ترین مواد شناخته شده پس از شیشه، فلزات دیر گداز نظیر تانتالم۱ و فلزات گروه پلاتینیم نظیر ایریدیم ۲ یا پلاتینیم ۳ برای استفاده در مواد خورنده حتی در دمای بالا است. یکی از مشکلات عمده این پلیمر خستگی ناشی از سیکل های حرارتی به واسطه تکرار انبساط و انقباض در یک دوره زمانی در دماهای بالاتر از مرز بیان شده است.

با توجه به تخلخل آنها، یکی از دلایل زوال فلوروکربن‌ها جذب مواد شیمیایی و به دنبال آن واکنش با اجزای دیگر در ترموپلاستیک است. هنگامی که این پدیده اتفاق می افتد، منجر به دفرمه شدن سطح، نظیر حبابی شدن می شود. این مواد دارای محدوده دمایی معینی هستند و از افزایش دما باید اجتناب شود.

پلی تری فلورو کلرو اتیلن (PTCE)

این کلرو فلورو پلیمر دارای پایداری حرارتی تا ۰C175 بوده و مقاومت شیمیایی کمتری نسبت به PTFE کاملاً فلورینه شده دارد. این پلیمرتحت نام تجاری Kel-F شناخته شده است. بطور کلی، خواص کاری این پلاستیک نسبتاً خوب است، بطوری که می تواند به وسیله قالبگیری تزریقی شکل گرفته و نتیجتاً بعنوان پوشش و همچنین برای پوشش‌های پیش ساخته برای بسیاری کاربردهای شیمیایی استفاده شود.

پلی وینیلیدن فلوراید (PVDF)

این ماده دارای مقاومت حرارتی کم تر ۰C15 و پایداری شیمیایی پایین تری نسبت به دیگر فلوروکربن‌ها است. این پلیمر دارای کاربردهای بسیاری در صنایع فرآیند‌های شیمیایی و ساخت پمپ ها، شیرها، لوله، مخازن کوچک و دیگر تجهیزات است. این مواد به عنوان پوشش و آستر نیز بکار می روند.

ب- پلی آمیدها (PA)

ترموپلاستیک های پلی آمید از طریق چگالش واکنش کربوکسیل اسید (RCOOH) و یک آمین (RNH2) با حذف آب تهیه می شود. این رزین ها تحت نام تجاری نایلون، یکی از اولین محصولات رزینی استفاده شده بعنوان مواد مهندسی شناخته شده است. خواص مکانیکی بسیار خوب بهمراه راحتی ساخت، رشد متداوم آنها را برای کاربردهای مکانیکی حتمی می‌کند. استحکام بالا، سختی، مقاومت در برابر سایش و مدول یانگ بالا خواص بسیار با ارزش نایلون ها بوده و موارد استعمال آن‌ را در کاربردهای مهم در تجهیزات عملیاتی مختلف نظیر چرخ دنده ها، اتصالات الکتریکی، شیرها، نگهدارنده ها، لوله گذاری و پوشش سیم‌ها توجیه می‌کند. مقاومت حرارتی نایلون می‌تواند متغیر باشد، اما در محدوده دمایی ۰C100، باید در نظر گرفته شود.

این پلیمر به عنوان یک ترموپلاستیک، به استثنای مقاومت ناچیز آن در تماس با اسیدهای معدنی قوی دارای مقاومت شیمیایی خوبی است. نظر به گوناگونی مشتقات یا کوپلیمرهای آغازگر، انواع تجاری متنوعی از رزین های نایلون، با خواص متفاوت موجود است. انواع اصلی آن، نایلون و نایلون ۶۶ است که دارای استحکام بالایی هستند. اخیراً ، انواع تجاری جدیدی از نایلون عرضه شده که بر انواع سابق از نظر غلبه بر محدودیت‌های موجود، برتری دارد. این مواد شامل پلی آمیدهایی است که دارای یک گروه آروماتیک در منومر آنها بوده، و به همین دلیل آرامید رزین (آرومانتیک آمیدها) که تحت نام تجاری Kelvar و Nomex شناخته شده، نامیده می شود.

ج- پلی استالیز

پلی استالزها تحت نام تجاری Delrin و عموماً با پلیمر اولیه فرمالدئید است. ثبات بعدی عالی و استحکام رزین استال، استفاده از آنها در چرخ دنده ها، پره‌های پمپ، انواع اتصالات رزوه ای نظیر درپوش‌ها و قسمتهای مکانیکی را امکان پذیر می‌کند. این مواد مختلف آلی و معدنی در محدوده وسیعی است. همانند بسیاری پلیمرهای دیگر این پلیمر فرمالدئید در مقابل اسیدهای قوی، بازهای قوی یا مواد اکسید کننده مقاوم نخواهد بود.

چ- سلولزها

مهمترین مشتقات سلولزی در پلیمرها، ترموپلاستیک های استات، بوتیرات و پروپیونات هستند. این پلیمرها در موارد مهم استفاده نمی شوند اما در قطعات کوچک نظیر پلاک های شناسایی، پوشش های تجهیزات الکتریکی و دیگر کاربردهایی که نیاز به یک پلاستیک شفاف با خواص مقاومت ضربه بالا دارند، استفاده می شود. خواص فرسایشی این مواد، مخصوصاً در مورد پروپیونات خوب است، اما مقاومت مکانیکی آنها در مقایسه با دیگر ترموپلاستیک ها قابل رقابت نیست. آب و محلولهای نمکی اثری بر این مواد ندارند، اما مقادیر ناچیز از اسید، قلیا یا دیگر حلال ها بر روی آن اثر نامطلوبی دارد. بالاترین دمای مفید ۰C60 است.

ح- پلی‌کربناتها (PC)

پلی کربناتها توسط واکنش پلی فنل با دی کلرومتان و فسژن تهیه می شود. منومر اولیه این ماده OC6H4C(CH3)2C6H4COO است. پلی کربنات یک ترموپلاستیک خطی، با خاصیت کریستالیزاسیون پایین، شفاف و با جرم مولکولی بالا بوده وعموماً تحت نام تجاری Lexan شناخته می‌شود. این پلیمر دارای مقاومت شیمیایی بالا در گریس کاری و روغن کاری بوده ولی دارای مقاومت پایین در برابر حلالهای آلی است.

بیشتر بخوانید !
کاربرد لوله پلی اتیلن در نیروگاه های برق

مقاومت فوق العاده بالای این ترموپلاستیک (۳۰ برابر شیشه ضربه گیر) به همراه مقاومت الکتریکی بالا راحتی ساخت، مقاومت در برابر آتش، و عبور نور بالا (۹۰%) استفاده از این پلیمر را در بسیاری کاربردهای صنعتی توسعه داده است. وقتی یک پوشش ترانسپارنت، با دوام و بسیار ضربه گیر مورد نیاز باشد، پلی کربنات انتخابی مناسبی است.

مقاومت فوق العاده بالای این ترموپلاستیک (۳۰ برابر شیشه ضربه گیر) بهمراه مقاومت الکتریکی بالا، راحتی ساخت، مقاومت در برابر آتش ، وعبور نور بالا (۹۰%) استفاده از این پلیمر را در بسیاری کاربردهای صنعتی توسعه داده است.وقتی یک پوشش ترانسپارنت با دوام و بسیار ضربه گیر مورد نیاز باشد، پلی کربنات انتخاب مناسبی است. در مجموع ، جهت ساخت قطعات بسیار کوچک ماشین آلات – مخصوصاً ماشین آلاتی که دارای تجهیزات قالبگیری پیچیده هستند، پره های پمپ ها، کلاه های ایمنی و دیگر کاربردهایی که نیاز به وزن سبک و مقاومت ضربه گیری بالا دارد، استفاده از ترموپلاستیک‌های پلی کربنات رضایت بخش است. این مواد می‌توانند در دماهای بین ۰C170 تا ۰C121 مورد استفاده قرار گیرند.

ترموست ها

الف – پلی اورتان ها (PUR)

این پلیمرها در فرمهای مختلف نظیر فوم های انعطاف پذیر و سخت، الاستومورها و رزین های مایع استفاده می شوند. پلی اورتان ها در برابر اسیدها و بازهای قوی و حلال های آلی دارای مقاومت خوردگی پایین هستندو فوم های انعطاف پذیر عمدتاً برای کاربردهای خانگی (نظیر بسته بندی ) استفاده می شوند، در حالیکه فوم های سخت به عنوان مواد عایق حرارتی برای انتقال سیالات کرایوژنیک و محصولات غذایی سرد بکار گرفته می شود.

ب – پلاستیک های فوران

این پلاستیک ها از فنولیگ گران تر هستند، اما استحکام کششی بالاتری دارند. بعضی مواد در این دسته دارای مقاومت قلیایی بیشتر هستند. مقاومت حرارتی این پلی استرها حدود ۰C80 است.

رزین‌های اپو کسی (EP)

اپوکسی های با پایه گلیسیدال اتر شاید بهترین ترکیب از نظر مقاومت سایشی و خواص مکانیکی باشند. اپوکسی های تقویت شده با فایبر گلاس استحکام بسیار بالا و مقاومت حرارتی خوبی دارند و مقاومت شیمیایی رزین اپوکسی در مقابل اسیدهای ضعیف بسیار عالی و در مقابل اسیدهای قوی نامناسب می باشد. مقاومت قلیایی آن، در محلول های ضعیف بسیار خوب است. اپوکسی در قالب ریزی، اکستروژن ها، ورقه ها، چسبنده ها و پوشش ها کاربرد دارند. این مواد بعنوان لوله ها ، شیرها، پمپ ها، تانک های کوچک، ظروف، سینک ها، آسترکاریها، پوشش های محافظ، عایق کاری، چسبنده ها و حدیده ها بکار می روند.

رابرها و الاستومرها

رابرها و الاستومرها عمدتاً بعنوان مواد پوشش برج ها،مخازن، تانکها، و لوله ها استفاده می شوند. مقاومت شیمیایی بستگی به نوع رابر و ترکیبات آن دارد. اخیراً رابرهای مصنوعی به بازار عرضه شده که نیازهای صنایع شیمیایی را تا حد زیادی تامین کند. هرچند هیچ یک از رابرهای تهیه شده دارای خواص رابر طبیعی نیست، ولی در یک یا چند مورد نسبت به آن برتری دارد. از رابرهای مصنوعی ، ترانس – پلی ایزوپرن سیس- پلی بوتادین، شبیه رابر طبیعی هستند. تفاوت رابرها و الاستومرها در کاربردهای خاص، مشخص می شود.

الف- رابر طبیعی (NR)

رابر طبیعی پلی‌ایزوپرن دارای منومر اولیه ایزوپرن (این ماده گاهی کائوچو نامیده می‌شود) است. رابر طبیعی توسط فرآوری عصاره درخت رابر(Heva Brasiliensis) با بخار، و ترکیب آن با عوامل ولکانیزه، آنتی‌اکسیدان‌ها و پرکننده تهیه می‌شود. رنگهای دلخواه می‌تواند با ترکیب رنگدانه‌های مناسب (به عنوان مثال، قرمز: اکسید آهن- Fe2O3، سیاه: کربن سیاه و سفید: اکسید روی – ZnO) حاصل شود. رابر طبیعی دارای خواص دی‌الکتریک مناسب قابلیت ارتجاعی عالی، قابلیت جذب ارتعاش بالا و مقاومت شکست مناسب است.

بطور کلی، رابرهای طبیعی از نظر شیمیایی در مقابل اسیدهای معدنی رقیق، قلیا و نمکها مقاوم هستند. رابر طبیعی، براحتی توسط مواد شیمیایی اکسید‌کننده، اکسیژن اتمسفری، ازن، روغن‌ها، بنزن و ستن‌ها مورد حمله قرار گرفته وغالباً دارای مقاومت شیمیایی کم در مقابل نفت و مشتقات آن و بسیاری مواد شیمیایی آلی هستند، بطوری که در معرض آنها نرم می‌شوند. علاوه بر این، در مقابل تابش اشعه UV (به عنوان مثال، قرار گرفتن در معرض نور خورشید) بسیار حساس هستند.

در مجموع این ماده برای کاربردهایی که به مقاومت سایشی، مقاومت الکتریکی و خواص جذب ضربه یا ارتعاش نیاز دارند، بسیار مناسب است. با وجود این، به واسطه محدودیت مکانیکی رابر طبیعی، و همچنین بسیاری رابرهای مصنوعی، توسط ولکانیزاسیون و ترکیب با افزودنیهای دیگر این مواد به محصولات پایدارتر و سخت‌تر تبدیل می‌شوند. فرآیند ولکانیزاسیون شامل اختلاط رابر طبیعی یا مصنوعی خام با ۲۵ درصد وزنی سولفور و حرارت مخلوط در OC150 است.

مواد رابر حاصله به واسطه واکنش‌های زنجیری بین رشته‌های کربن مجاور به مراتب سخت‌تر و قوی‌تر از مواد اولیه هستند. بنابراین، کاربردهای صنعتی رابر طبیعی ولکانیزه شده شامل مواردی نظیر: پوشش داخلی پمپ‌ها، شیرها، لوله‌ها، خرطومی‌ها و اجزای ماشین کاری است. به دلیل مقاومت شیمیایی پایین و حساسیت این رابر به نور خورشید، که یک خاصیت نامطلوب در صنایع است، امروزه این ماده با انواع جدید الاستومرها جایگزین می‌شود.

ب-ترانس- پلی‌ایزوپرن رابر (PIR)

ترانس – ۱ و ۴- پلی‌ایزوپرن رابر، یک رابر مصنوعی با خواص مشابه نوع طبیعی آن است. این ماده اولین بار در طول جنگ جهانی دوم به واسطه مشکلات تامین رابر طبیعی بطور صنعتی شناخته شد. گرچه، این ماده حاوی ناخالصی‌های کمتری نسبت به رابر طبیعی بوده و فرآیند تهیه آن بسیار ساده است، به دلیل قیمت بالای آن، زیاد مورد استفاده قرار نمی گیرد. خواص مکانیکی و مقاومت شیمیایی آن، مشابه رابر طبیعی بوده و مانند بسیاری از انواع دیگر رابرها خواص مکانیکی آن توسط فرآیند ولکانیزاسیون بهبود می‌یابد.

ج- رابر استایرن بوتادین (SBR)

رابر استایرن بوتادین، یک کوپلیمر استایرن و بوتادین است. این رابر تحت نام تجاری Buna S شناخته شده است. مقاومت شیمیایی آن مشابه رابر طبیعی است و دارای مقاومت پایین در مقابل اکسید‌کننده‌ها، هیدروکربن‌ها و روغن‌های معدنی است. از این رو از نظر شیمیایی مزیت خاصی نسبت به دیگر رابرها ندارد این رابر در تایر اتومبیل، تسمه‌ها، واشرها، لوله‌های خرطومی و دیگر محصولات متنوع استفاده می‌شود

چ- رابر نیتریل (NR)

نیتریل رابر، یک کوپلیمر از بوتادین و آکریلونیتریل است. این ماده در نسبتهای متفاوت از ۲۵:۷۵ تا ۷۵:۲۵ ساخته می‌شود که سازنده باید درصد آکریلونیتریل را در محصول خود مشخص کند. رابر نیتریل تحت نام تجاری Buna N شناخته شده و نظر به مقاومت در برابر متورم شدن در حالت غوطه‌وری در روغن‌های معدنی، دارای مقاومت بالا در مقابل روغن‌ها و حلا‌ل‌ها است.

علاوه بر این، مقاومت شیمیایی آن در مقابل روغن‌ها متناسب با میزان آکریلونیتریل آن است. گرچه این ماده در مقابل اکسید‌کننده‌های قوی نظیر اسید نیتریک مقاوم نیست، مقاومت خوبی در مقابل ازن و تابش اشعه UV نشان می‌دهد. رابر نیتریل برای لوله‌های پلاستیکی گازوئیل، دیافراگم پمپ‌های سوخت، واشرها، آب‌بندها و درزگیرها (نظیر او- رینگ‌ها) ونهایتاً زیره‌های مقاوم در برابر روغن برای کفش‌های کار ایمنی استفاده می‌شوند.

ح) بوتیل رابر

بوتیل رابر، یک کوپلیمر از ایزوبوتیلن و ایزوپرن است. بوتیل رابر از نظر شیمیایی در مقابل اسیدهای معدنی رقیق، نمکها و قلیاها مقاوم بوده و مقاومت شیمیایی خوبی در مقابل اسید‌های غلیظ به استثنای اسیدنیتریک و اسید سولفوریک دارا است. این رابر در مقابل ازن نیز مقاومت بالایی دارد. گرچه به راحتی در مقابل مواد شیمیایی اکسید‌کننده، روغن‌ها، بنزن، و ستن‌ها مورد حمله قرار می‌گیرد، دارای مقاومت شیمیایی پایین در مقابل نفت و مشتقات آن و دیگر مواد شیمیایی آلی است.

علاوه بر این، رابر بوتیل در مقابل اشعه UV (مانند قرار گرفتن در معرض نور خورشید) بسیار حساس است. مشابه دیگر رابرها، خواص مکانیکی آن توسط فرآیند ولکانیزاسیون بهبود می‌یابد. کاربردهای صنعتی آن مشابه کاربردهای رابر طبیعی است. بوتیل رابر برای تیوبهای داخلی تایر و لوله‌های خرطومی استفاده می‌شود.

نتیجه‌گیری

  1. با توجه به مطالب ارایه شده در این مقاله، پلیمرها به سه گروه اصلی ترموپلاستیک‌ها، ترموست‌ها و الاستومرها تقسیم می شوند که بعضی انواع آن از نظر خواص فیزیکی و کاربردهای آنها بیان شد.
  2. نتیجه حاصل از بررسی انواع مختلف پلیمرها مشخص می‌کند که هر سه گروه مذکور داری مقاومت شیمیایی بسیار بالا در برابر اسیدهای معدنی بوده و تقریباً همه آنها در مقابل تابش اشعه UV، مخصوصاً تابش نور خورشید، بسیار حساس هستند.
  3. ترموپلاستیک‌ها با توجه به خواص مکانیکی و شیمیایی مناسب، در بسیاری کاربردهای صنعتی نظیر لوله‌ها و تجهیزات انتقال، تجهیزات الکتریکی، پوشش‌ها، اتصالات و نظایر آن استفاده می‌شوند.
  4. ترموست‌ها برخلاف ترموپلاستیک‌ها دارای مقاومت خوردگی پایینی هستند و در نتیجه استفاده از آنها در صنایع محدود به ساخت لوله‌ها، شیرها، پمپ‌ها، ظروف، پوشش‌های محفاظ، عایق‌کاری، چسبنده‌ها و … می شود.
  5. الاستومرها نیز به عنوان مواد پوشش‌ مخازن، تانکها و لوله‌ها استفاده شده و از نظر شیمیایی در مقابل اسیدهای معدنی رقیق، قلیاها و نمکها مقاوم هستند.

مطالب مفید دیگر :

آبیاری قطره ای و همه چیز درباره آن – سامانه های نوین آبیاری، آبیاری هوشمند چیست؟ – لوله کشی آب ساختمان – نگاهی به اوضاع پیش روی پتروشیمی در ایران – آیا لوله های پلی اتیلن برای انتقال آب شرب مناسبند؟